Computability on Regular Subsets of Euclidean Space
نویسنده
چکیده
For the computability of subsets of real numbers, several reasonable notions have been suggested in the literature. We compare these notions in a systematic way by relating them to pairs of ‘basic’ ones. They turn out to coincide for full-dimensional convex sets; but on the more general class of regular sets, they reveal rather interesting ’weaker/stronger’ relations. This is in contrast to single real numbers and vectors where all ‘reasonable’ notions coincide. Mathematics Subject Classification: 03F60,51M04,54H05,65D18.
منابع مشابه
On the Computability of Region-Based Euclidean Logics
By a Euclidean logic, we understand a formal language whose variables range over subsets of Euclidean space, of some fixed dimension, and whose non-logical primitives have fixed meanings as geometrical properties, relations and operations involving those sets. In this paper, we consider first-order Euclidean logics with primitives for the properties of connectedness and convexity, the binary re...
متن کاملComputable operators on regular sets
For regular sets in Euclidean space, previous work has identified twelve ‘basic’ computability notions to (pairs of) which many previous notions considered in literature were shown to be equivalent. With respect to those basic notions we now investigate on the computability of natural operations on regular sets: union, intersection, complement, convex hull, image, and pre-image under suitable c...
متن کاملTOPOLOGICAL CHARACTERIZATION FOR FUZZY REGULAR LANGUAGES
We present a topological characterization for fuzzy regular languages: we show that there is a bijective correspondence between fuzzy regular languages and the set of all clopen fuzzy subsets with finite image in the induced fuzzy topological space of Stone space (Profinite space), and then we give a representation of closed fuzzy subsets in the induced fuzzy topological space via fuzzy regular...
متن کاملClosed Sets and Operators thereon: Representations, Computability and Complexity
The TTE approach to Computable Analysis is the study of so-called representations (encodings for continuous objects such as reals, functions, and sets) with respect to the notions of computability they induce. A rich variety of such representations had been devised over the past decades, particularly regarding closed subsets of Euclidean space plus subclasses thereof (like compact subsets). In ...
متن کاملComputable Operations on Compact Subsets of Metric Spaces with Applications to Fréchet Distance and Shape Optimization
We extend the Theory of Computation on real numbers, continuous real functions, and bounded closed Euclidean subsets, to compact metric spaces (X, d): thereby generically including computational and optimization problems over higher types, such as the compact ‘hyper’ spaces of (i) nonempty closed subsets of X w.r.t. Hausdorff metric, and of (ii) equicontinuous functions on X . The thus obtained...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Log. Q.
دوره 48 شماره
صفحات -
تاریخ انتشار 2002